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Abstract—In this paper, the works of some authors were 

briefly reviewed with some relevant literature and current state 

of knowledge pertaining to the three-dimensional proposed 

rook movement on a chess board within the restricted area were 

closely studied. We also described some basic terminologies that 

are helpful in analyzing and studying the rook movements on a 

three-dimensional chess board. However, we showed that the 

angle between the vertical and the horizontal rook movement 

on the same chess board must be  𝟗𝟎° −  𝛂, 𝛃, 𝛉 . We also 

showed that ⧩𝐌 is a unit vector in the direction of the rook 

movement Furthermore, the rook movement and the distance 

from a fixed point 𝐅(𝐯𝟏, 𝐯𝟐, 𝐯𝟑) to any point 𝐓(𝐬𝟏, 𝐬𝟐, 𝐬𝟑) for a 

three-dimensional chess board with the maximum number of 

arrangements for the k non-attacking rooks were obtained on 

an 𝟖 × 𝟖  array board. Furthermore, some combinatorial 

problems were solved by applying generating functions to the 

rook movement.  

 

Index Terms—Chess movements, combinatorial   structures, 

Disjoined chess board in three-dimension, Permutation, 

three-dimensional structures, r-arrangement, Vectors, Vector 

generating function 

.  

I. INTRODUCTION 

The study of generating combinatorial structures has a long 

and distinguishing history. However, the exhaustive listing of 

elements in relationship to combinatorial structures has one 

of the first non-trivial problems to be tackled by computer 

(Knuth 2005). This paper, reviews some of the relevant 

literature and current state of knowledge pertaining to the 

three-dimensional proposed rook movement on a chess board 

within restricted area. It also describes the basic 

terminologies that are helpful in analyzing and understanding 

the rook movements on a three-dimensional chess board.  

However, Rook/Bishop polynomial has a non-ignorable part 

to play in the theory of permutations with restricted positions. 

Laisin&Uwandu, 2019; Laisin, Okoli, &Okaa-onwuogu, 

2019; LAISIN, 2018; Laisin, 2018; Skoch, 2015; have shown 

that polynomial of either the rook / bishop on a given board 

can be generated recursively by applying cell decomposition 

method of Riordan (Riordan, 1980).  

Furthermore, Laisin, 2018; Laisin&Ndubuisi, 2017; 

scrutinized, examined and investigated rook movement on a 
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chess board within restricted area with techniques, such as 

permutations, combinations, polynomials using generating 

functions. Also, they determined solutions to the fundamental 

problems by examining the existence, enumeration and 

structure of the proposed rook movement on a chess board. 

Informally, the rook movement on a chess board that are 

classified into three categories: search, generation, and 

enumeration (Laisin, 2017).  

In-addition, rook theory has a long interesting history arising 

from permutation problems with restricted positions (Laisin, 

2018; Herckman, 2006; Jay &Haglund, 2000).  The theory of 

rook on Ferrers boards was first developed by Foata and 

Schutzenderger, 1970 with details on characterization of rook 

equivalence through bijective proofs. Goldman, Joichi and 

White 1975 introduced a new face of the rook polynomial of 

a Ferrers board and gave a combinatorial interpretation of it 

which showed that it has all integer roots. However, in 

connections with chromatic polynomials by applying Ferrers 

board techniques with the rook polynomial which led us to 

modeling of some binomial theorems (Goldman, Joichi, 

Reiner, and White, 1977). Also, Goldman, Joichi, and White 

1977, studied Orthogonal polynomial while Haglund, 1996, 

worked on hyper geometric series and so many other large 

literatures on Ferrers board. 

Laisin, 2018; made some generalization of rook polynomials 

that generalized a classic notion of placing non-taking rooks 

on a chess board while Jay and Haglund, 2000,  worked 

Ferrers board where rooks are placed on the columns of the 

board moving from left to right as new rows are created and 

generalizations on rook polynomial, this leads to a large new 

combinatorial models’ class with connections to sequence 

polynomial of binomial type and many other models such as 

permutation of sets and multiset, Bessel polynomials and 

matching theory, and forest and Abel polynomials.  

Furthermore, Jay and Haglund, 2000; focused on working 

examples of these models, constructing bijections and 

reasoning with the rook polynomial on a Ferrers board. In 

fact, the basis of their research was on the notion of an 𝑖 – row 

creation rook placement. This means that the column where 

rooks will be placed is chosen first. Then, as non – attacking 

rooks is placed in the columns from left to right, each time a 

rook is placed, an 𝑖 – new rows are created and drawn to the 

right end and immediately above where the rook is placed. 

For 𝑖 >  0, as rook is being placed, the next rook to be placed 

has an increased number of possible positions.  

The rook polynomials provide a way of counting permutation 

with restricted positions that was developed by Kaplansky, 

and Riordan, 1946. Laisin, 2018; Nickolas and Feryal, 2009 

generalized these properties and theorems for 2 - dimensional 
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rook polynomials. However, more advanced dimensions 

were partially done for the 3 – dimensional cases (Zindle, 

2007).  

Now, we shall be focusing on disjoined chess board in three 

dimensions for non-attacking rooks that generates the sum 

90° −  𝛼, 𝛽, 𝜃  as sum of its angles. In addition, we worked 

on generalization of rook polynomials for a two– 

dimensional and also for a three-dimensional rook 

polynomial on a disjoined three-dimensional chess board.   

A. Basic definitions 

Rook: A rook is a chess piece that moves horizontally or 

vertically and can take (or capture) a piece if that piece rests 

on a square in the same row or column as the rook (Laisin, 

2018). 

a. Board: A board B is an 𝑛 × 𝑚 array of n rows 

and m columns. When a board has a darkened 

square, it is said to have a forbidden position. 

Rook polynomial:  A rook polynomial on a board B, with 

forbidden positions is denoted as 𝑅(𝑥, 𝐵), given by 

 𝑅 𝑥, 𝐵 =  

𝑘

𝑖=1

𝑟𝑖(𝐵)𝑥𝑖  

Where  𝑅(𝑥, 𝐵) has coefficients  𝑟𝑖(𝐵)  representing the 

number of non-capturing rooks on board B. Clearly, we have 

just one way of not placing a rook. Thus 𝑟0 𝐵 = 1 

b.  A board B with forbidden positions, is said to 

be disjoint if the board can be decomposed into 

two sub-boards 𝐵𝑖 ∶ 𝑖 = 1 𝑎𝑛𝑑 2 such that, 

neither 𝐵1nor 𝐵2share the same row or column.  

          

                 

         

             

Fig. 4         

Fig. 3                  

                  

 

 

Clearly, fig 3 is disjoint while fig 4 is not.  

Boards are invariant, they can be rearranged by swapping 

rows with rows or by swapping columns with columns. This 

allows us to attempt to make non-disjoint boards into disjoint 

boards. Non-taking rooks is to enumerate the number of ways 

of placing i-rooks on a chessboard such that no rook will be 

captured by any other rook. 

 

B.  Basic definitions 

The direction of a vector in three-dimensions is determined 

by the angles which the vector makes with the three axes of 

reference 

 

 
 

Let 𝑂𝑃 = 𝑟 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 . Then 𝑐𝑜𝑠 ∝=
𝑎

𝑟
 , 𝑐𝑜𝑠𝛽 =

𝑏

𝑟
 , 𝑎𝑛𝑑 𝑐𝑜𝑠𝜃 =

𝑐

𝑟
 . we have 

𝑎2 +  𝑏2 +  𝑐2 = 𝑟2 and it follows that𝑟2𝑐𝑜𝑠2 ∝
 +𝑟2𝑐𝑜𝑠2𝛽 + 𝑟2𝑐𝑜𝑠2𝜃 = 𝑟2 

⟹ 𝑐𝑜𝑠2 ∝  + 𝑐𝑜𝑠2𝛽 +  𝑐𝑜𝑠2𝜃 = 1 

Thus, if 𝑐𝑜𝑠 ∝=
𝑎

𝑟
 , 𝑐𝑜𝑠𝛽 =

𝑏

𝑟
 , 𝑎𝑛𝑑 𝑐𝑜𝑠𝜃 =

𝑐

𝑟
  and  𝑙 =

𝑐𝑜𝑠 ∝, 𝑚 = 𝑐𝑜𝑠𝛽 , 𝑛 = 𝑐𝑜𝑠𝜃   then, we have 

𝑙2 + 𝑚2 + 𝑛2 = 1 

Now, the direction cosines of the vector 𝑂𝑃 𝑖𝑠  𝑙2 + 𝑚2 +

𝑛2  
Thus, given the vector  𝑟 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘,  we have that 𝑙 =
𝑎

𝑟
 , 𝑚 =

𝑏

𝑟
 , 𝑛 =

𝑐

𝑟
 and the 

 𝑟 =  𝑟 =   𝑎2 +  𝑏2 +  𝑐2 
 

C.  THEOREM (two-dimensional n-disjoint 

sub-boards) 

If 𝐵 is a board of darkened squares that decomposes into 𝑛 

disjoint sub-boards 𝐵1, 𝐵2 , …  𝐵𝑛 ,  then 

𝑅 𝑥, 𝐵 = 𝑅 𝑥, 𝐵1 𝑅 𝑥, 𝐵2  …  𝑅 𝑥, 𝐵𝑛 .  (Laisin, 2018) 

 

D.  THEOREM ((two-dimensional Restricted 

Positions) 

The number of ways to arrange n objects among m positions 

 𝑚 ≥ 𝑛 such order is maintained, when there are restricted 

positions is  

𝑅 𝑥, 𝐵 =  

𝑛

𝑖=0

(−1)𝑖𝑟𝑖(𝐵) 𝑚 − 𝑖𝑛 

 𝑚𝑛 
 𝑤ℎ𝑒𝑟𝑒 𝑚

= 𝑛   (𝐿𝑎𝑖𝑠𝑖𝑛, 2018)    
E. THEOREM 

Let n be an even number, and let 𝑆𝑛 ,𝑛 denote an 𝑛 ×

𝑛chessboard with the following specifications: for every row 

𝑖, 𝑖𝑡ℎand (𝑛 +  1 − 𝑖)𝑡ℎpositions are restricted. Then 

.(Zindle, 2007) 

F.  THEOREM (Possible rook movements) 

Let𝐵 be a board of darkened squares. Let 𝑅: 𝐵 →  0,∞  be 

(𝑀, 𝑅0,∞)-possible rook movements. Then, there exist simple 

rook movement functions𝛾𝑛 , 𝑛 ∈ 𝑁+𝑜𝑛 𝐵 such that 𝛾𝑛 ↑ 𝑅. 
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G.  THEOREM 

Let 𝐵𝑚 ,𝑛 ,𝑟denote an 𝑚 × 𝑛 × 𝑟chessboard with no restricted 

positions, and let 𝑠 =  𝑚𝑖𝑛{𝑚, 𝑛, 𝑟}. Then;      

𝑅 𝐵𝑚 ,𝑛 ,𝑟 =  

𝑠

𝑘=0

 𝑚𝑘 𝑃(𝑛 ,𝑘)𝑃(𝑟 ,𝑘)𝑥
𝑘 ,    (𝑍𝑖𝑛𝑑𝑙𝑒, 2007) 

H.  THEOREM 

Consider figure 2.6 as three-dimensional disjoint boards. 

Then  

 

 
   Fig 2.6 

The number of ways of placing k non-attacking rooks on the 

full m × n board is equal to    

 𝑚𝑘  𝑛𝑘 𝑘!, ∀  0 ≤ 𝑘 ≤ 𝑚𝑖𝑛(𝑚, 𝑛)     (Nickolas  and 

Feryal, 2009) 

II. MAIN RESULTS 

Theorem  

If the movement on a three-dimensional disjoined chess 

boards is a rook movement, then the angle between the 

vertical and the horizontal rook movement must be 90° −
 𝛼, 𝛽, 𝜃 .  

 

Proof 

Consider the direction of a vector in three-dimensions is 

determined by the angles which the vector makes with the 

three axes of reference 

 
 

 

 

 

 

 

 

 

 

 

 

 

Let   𝑂𝑃 = 𝑟 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 . Then 𝑐𝑜𝑠 ∝=
𝑎

𝑟
 , 𝑐𝑜𝑠𝛽 =

𝑏

𝑟
 , 𝑎𝑛𝑑 𝑐𝑜𝑠𝜃 =

𝑐

𝑟
 . we have 

𝑎2 +  𝑏2 +  𝑐2 = 𝑟2 
Let the rook movement on a three-dimensional chess board 

be  𝑟 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘  for horizontal and vertical rook 

movement. Then, the angle formed at the horizontal by the 

rook movement on the three-dimensional disjoined chess 

board are  𝛼, 𝛽  𝑎𝑛𝑑 𝜃,  given as follows; 𝛼 = (
𝑎

 (𝑎 ,𝑏 ,𝑐) 
) ,  

 𝛽 = (
𝑏

 (𝑎 ,𝑏 ,𝑐) 
) and   𝜃 = (

𝑐

 (𝑎 ,𝑏 ,𝑐) 
) respectively. Similarly, the 

angles formed at the vertical by the rook movement on the 

three-dimensional disjoined chess board are  𝛼∗,  𝛽∗,  𝑎𝑛𝑑  𝛾∗  

respectively. Since, the angle for the horizontal and the 

vertical rook movement is 90°, then we have  

 𝛼, 𝛽, 𝜃 +   𝛼∗,  𝛽∗,  𝜃∗ = 90° 

  𝛼∗,  𝛽∗,  𝜃∗ = 90° −  𝛼, 𝛽, 𝜃  
Thus, it follows that the angle for the horizontal and the 

vertical rook movement on the restricted area is its cosines of 

the angle generated by the vectors on the chess board, then it 

follows that the disjoined chess board are three-dimensional.  

 

THEOREM 2: 

Suppose M is the rook movement and the distance from a 

fixed point 𝐹(𝑣1 , 𝑣2 , 𝑣3) to any point 𝑇(𝑠1, 𝑠2 , 𝑠3). Then, the 

⧩𝑀 is a unit vector in the direction of the rook movement 

 𝐹𝑇 =   𝑀.  
 

Proof 

M is the rook movementthen,𝑇(𝑠1 , 𝑠2 , 𝑠3) is any position to 

the horizontal/vertical of  𝐹 𝑣1 , 𝑣2 , 𝑣3 . 
Let 𝑚𝐹  𝑎𝑛𝑑  𝑚𝑇 be the rook position vectors for the initial 

and final rook positions with vectors 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘  and 

𝑠1𝑖 + 𝑠2𝑗 + 𝑠3𝑘 respectively. 

Now 

𝑀 = 𝑚𝑇 − 𝑚𝐹 

= (𝑠1𝑖 + 𝑠2𝑗 + 𝑠3𝑘) − (𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘) 

= (𝑠1 − 𝑣1)𝑖 + (𝑠2 − 𝑣2)𝑗 + (𝑠3 − 𝑣3)𝑘 
Then, the distance of the rook movement is; 

𝑀 =  (𝑠1 − 𝑣1)2 + (𝑠2 − 𝑣2)2 + (𝑠3 − 𝑣3)2 
1

2 

Then, 

⧩𝑀 = ⧩ (𝑠1 − 𝑣1)2 + (𝑠2 − 𝑣2)2 + (𝑠3 − 𝑣3)2 
1

2 
 

=
(𝑠1 − 𝑣1)𝑖 + (𝑠2 − 𝑣2)𝑗 + (𝑠3 − 𝑣3)𝑘

 (𝑠1 − 𝑣1)2 + (𝑠2 − 𝑣2)2 + (𝑠3 − 𝑣3)2 
1

2

 

 

=
𝑀

𝑀
 

Thus, it is the unit vector to the rook movement in the 

direction  𝑀 = 𝐹𝑇. 

 

III. APPLICATIONS 

Example 4.1 

Determine the maximum number of rooks that are 

non-attacking on a forbidden chess board and its generating 

function. Hence, find its rook projection on the vector 𝑖 +
𝑗 + 𝑘.. 

 

Solution 

Considering, 𝐵1  we have for k non attacking rooks on a 

 

r 

p 
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disjoined chess board as follows; 

 𝑅 𝑥, 𝐵1 =  

𝑛

𝑖=0

 𝑥 𝑖𝑟𝑖 𝐵1 

= 1 + 𝑥𝑟1 𝐵1 
+ 𝑥2𝑟2 𝐵1 + .  .  . +𝑥𝑛𝑟𝑛 𝐵1  

 Since, 𝐵1 is a two-dimensional chess board, then, the total 

number of rooks that give a maximum number of rook moves 

on the forbidden space with non-attacking rooks is as 

follows; 

 

We have the following rook placements; 𝑟0 𝑥, 𝐵1 =
1 ,   𝑟1 𝑥, 𝐵1 = 8𝑤𝑎𝑦𝑠, 𝑟2 𝑥, 𝐵1 = 21 𝑤𝑎𝑦𝑠, 𝑟3 𝑥, 𝐵1 =
20 𝑤𝑎𝑦𝑠, 𝑟4 𝑥, 𝐵1 = 5 𝑤𝑎𝑦𝑠,
𝑟5 𝑥, 𝐵1 = 4 𝑤𝑎𝑦𝑠,   𝑟6 𝑥, 𝐵1 = 2 𝑤𝑎𝑦𝑠 𝑎𝑛𝑑   𝑟7 𝑥, 𝐵1 =
1 𝑤𝑎𝑦 respectively.  

However, the two-dimensional rook boards generate the rook 

function with the generating function.                

𝑅 𝑥, 𝐵1 =  

7

𝑖=0

(1,8,21,20,5,4,2,1)𝑥𝑖  

= 1 + 18𝑥 + 21𝑥2 + 20𝑥3 + 5𝑥4 + 4𝑥5 + 2𝑥6 + 𝑥7 

Thus, 𝑅 𝑥, 𝐵1  is the pathway generated by the rook 

movements for the horizontally and vertically rook 

movements. Hence, a projection of the vector of  8𝑖 + 8𝑗 +
8𝑘 on the vector  𝑖 + 𝑗 + 𝑘 has a unit vector that is given as  
1

 3
 𝑖 + 𝑗 + 𝑘  that gives us a rook projection movement 

of
24

 3
 𝑢𝑛𝑖𝑡𝑠. As required.. 

IV. CONCLUSION 

The movements polynomials as Rook are very interesting for 

the both two and three-dimensional cases. Rook polynomials 

have a variety of applications because they directly relate to 

permutations with restricted positions. This implies that 

Rook polynomials can be applied from combinatorial design 

theory to cryptography. 

 

In this paper we were able to develop the total number of 

ways to arrange n rooks among m positions (𝑚 ≥ 𝑛) and 

also the construction of rook polynomial that decomposes 

into 8−disjoint sub-boards 𝐵1, 𝐵2, …𝐵8  by using an 8 × 8 

array board. However, we were able to show that the angle 

between the vertical and the horizontal rook movement must 

be 90° −  𝛼, 𝛽, 𝜃 .  

  Furthermore, the rook movement and the distance from a 

fixed point 𝐹(𝑣1 , 𝑣2 , 𝑣3) to any point 𝑇(𝑠1, 𝑠2 , 𝑠3) for a 

three-dimensional chess board with the maximum number of 

arrangements for the k non-attacking rooks were obtained on 

an 8 × 8 array board.  

 

 

V. RECOMMENDATIONS 

Further study can be carried out with the rooks on 

three-dimensional disjoined boards to determine a general 

pathway for rook movements on a three- dimensional chess 

board. In addition, further studies could also examine what 

would happen to rook polynomials by changing the shape of 

the boards. 
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